Passive transfer of Lambert-Eaton myasthenic syndrome induces dihydropyridine sensitivity of ICa in mouse motor nerve terminals.

نویسندگان

  • Y F Xu
  • S J Hewett
  • W D Atchison
چکیده

Mice were injected for 30 days with plasma from three patients with Lambert-Eaton Myasthenic Syndrome (LEMS). Recordings were made from the perineurial sheath of motor axon terminals of triangularis sterni muscle preparations. The objective was to characterize pharmacologically the identity of kinetically distinct, defined potential changes associated with motor nerve terminal Ca2+ currents (ICa) that were affected by LEMS autoantibodies. ICa elicited at 0.01 Hz were significantly reduced in amplitude by approximately 35% of control in LEMS-treated nerve terminals. During 10-Hz stimulation, ICa amplitude was unchanged in LEMS-treated motor nerve terminals, but was depressed in control. During 20- or 100-Hz trains, facilitation of ICa occurred in LEMS-treated nerve terminals whereas in control, no facilitation occurred during the trains at 20 Hz and marked depression occurred at 100 Hz. Saturation for amplitude and duration of ICa in control terminals occurred at 2 and 4-6 mM extracellular Ca2+, respectively; in LEMS-treated terminals, the extracellular Ca2+ concentration had to increase by two to three times of control to cause saturation. Amplitude of the two components of ICa observed when the preparation was exposed to 50 microM 3,4-diaminopyridine and 1 mM tetraethylammonium were both reduced by LEMS plasma treatment. The fast component (ICa,s) was reduced by 35%, whereas the slow component (ICa, s) was reduced by 37%. omega-Agatoxin IVA (omega-Aga-IVA; 0.15 microM) and omega-conotoxin-MVIIC (omega-CTx-MVIIC; 5 microM) completely blocked ICa in control motor nerve terminals. The same concentrations of toxins were 20-30% less effective in blocking ICa in LEMS-treated terminals. The residual ICa remaining after treatment with omega-Aga-IVA or omega-CTx-MVIIC was blocked by 10 microM nifedipine and 10 microM Cd2+. Thus LEMS plasma appears to downregulate omega-Aga-IVA-sensitive (P-type) and/or omega-CTx-MVIIC-sensitive (Q-type) Ca2+ channels in murine motor nerve terminals, whereas dihydropyridine (DHP)-sensitive (L-type) Ca2+ channels are unmasked in these terminals. Acute exposure (90 min) of rat forebrain synaptosomes to LEMS immunoglobulins (Igs; 4 mg/ml) did not alter the binding of [3H]-nitrendipine or [125I]-omega-conotoxin-GVIA (-omega-CgTx GVIA) when compared with synaptosomes incubated with an equivalent concentration of control Igs. Conversely, LEMS Igs significantly decreased the Bmax for [3H]-verapamil to approximately 45% of control. The apparent affinity of verapamil (KD) for the remaining receptors was not significantly altered. Thus acute exposure of isolated central nerve terminals to LEMS Igs does not increase DHP sensitivity, whereas it reduces the number of binding sites for verapamil but not for nitrendipine or omega-CgTx-GVIA. These results suggest that chronic but not acute exposure to LEMS Igs either upregulates or unmasks DHP-sensitive Ca2+ channels in motor nerve endings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

[Eaton-Lambert syndrome].

In the myasthenic syndrome sometimes associated with bronchogenic carcinoma (Eaton-Lambert syndrome) muscular weakness is caused by reduced acetylcholine release from motor nerve terminals (Elmqvist and Lambert, 1968). Guanidine is a potent drug in this condition (Lambert, 1966) but serious adverse reactions have been reported (Lambert and Howard, 1972; Cherington, 1976; Henriksson et al., 1977...

متن کامل

Reduction of calcium currents by Lambert-Eaton syndrome sera: motoneurons are preferentially affected, and L-type currents are spared.

Previous work has demonstrated that Lambert-Eaton syndrome (LES) antibodies reduce calcium currents in nonneuronal cells and neurons and reduce the amplitude of extracellularly recorded currents at mouse motor nerve terminals. We compared effects of LES sera on whole-cell currents of cultured nerve and muscle. LES sera more strongly reduced calcium currents in motoneurons than in sensory neuron...

متن کامل

Lambert-Eaton Myasthenic Syndrome; Pathogenesis, Diagnosis, and Therapy

Lambert-Eaton Myasthenic Syndrome (LEMS) is a rare disease with a well-characterized pathogenesis. In 50% of the patients, LEMS is a paraneoplastic manifestation and caused by a small cell lung carcinoma (SCLC). Both LEMS patients with SCLC and those without this tumour have in 85% of cases pathogenetic antibodies of very high LEMS specificity against voltage-gated calcium channels (VGCCs) in t...

متن کامل

Iberiotoxin-Induced Block of Ca -Activated K Channels Induces Dihydropyridine Sensitivity of ACh Release from Mammalian Motor Nerve Terminals

The role which Ca -activated K (KCa) channels play in regulating acetylcholine (ACh) release was examined at mouse motor nerve terminals. In particular, the ability of the antagonist iberiotoxin to recruit normally silent L-type Ca channels to participate in nerve-evoked release was examined using conventional intracellular electrophysiological techniques. Incubation of cut hemidiaphragm prepar...

متن کامل

Monoclonal antibodies raised against Guillain-Barré syndrome-associated Campylobacter jejuni lipopolysaccharides react with neuronal gangliosides and paralyze muscle-nerve preparations.

Guillain-Barré syndrome and its variant, Miller-Fisher syndrome, are acute, postinfectious, autoimmune neuropathies that frequently follow Campylobacter jejuni enteritis. The pathogenesis is believed to involve molecular mimicry between sialylated epitopes on C. jejuni LPSs and neural gangliosides. More than 90% of Miller-Fisher syndrome cases have serum anti-GQ1b and anti-GT1a ganglioside anti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 80 3  شماره 

صفحات  -

تاریخ انتشار 1998